First CONCORDIA Workshop on Collaborative DDoS Mitigation 15 September 2022

Anycast Agility: Network Playbooks to Fight DDoS

ASM Rizvi*
USC/ISI

Leandro Bertholdo* University of Twente

Joao M Ceron SIDN Labs

John Heidemann USC/ISI

* Indicates equal contribution

CONCORDIA Poster 2019

Planning for Anycast as Anti-DDoS

Distributed Denial-of-Service (DDoS) is Bad... and Getting Worse

AWS said it mitigated a 2.3 Tbps DDoS attack, the largest ever

The previous record for the largest DDoS attack ever recorded was of 1.7 Tbps, recorded in March 2018.

- DDoS is big
 - Botnets
- DDoS is getting bigger
 - Github 1.35Tbps → Amazon gets 2.3 Tbps
 - IoT & CPE devices
 - Reflection attacks from Cloudproviders

DDoS-as-a-service is cheap

- starting at \$1/attack [Santanna et al, 2015]

Why anycast? Where do you use anycast in your daily life?

DNS case study: Where are universities hosting their DNS?

%80

%60

%40

%20

University Name Servers (NS) analyzed --> 15,218 University with anycasted name server (NS) --> 20 %

How Anycast works

Anycast Service

-- Anycast as a defense mechanism -- more sites the better resilience!

What we did...

https://youtu.be/ie5Gt7giMLw

Let's look the path to get there...

What happen in a DDoS Attack?

One site is overwhelmed

How to defend?

1- Absorb at One Site

One site is overwhelmed

2- Spread Traffic

3- Shift Traffic

Rebalance the Network based on capacity

Shift to larger sites with spare/elastic capacity

How does the redistribution? BGP is unpredictable!

What do you mean by "BGP unpredictable"?

What do you mean by "BGP unpredictable"?

The Challenges

Challenge 1: Unknown Load

- What you see is
 - At full capacity: 50% attack traffic
- The truth is
 - At 175% capacity
 - 100% attack traffic
 - 75% legitimate
 - Lost 25% of legitimate traffic

Site observation under-estimates attack

Our contribution: proposing a way to estimate the attack x offered load

Challenge 2: Controlled Traffic Engineering

Our contribution: we help the operator to get the right shift

point

Challenge 3: How to redistribute?

Our **contribution**: how to build a **BGP playbook** to predict anycast ahead of time

Our Contribution

- New approach to **estimate the load** (challenge 1)
 - -Allows us to plan a defense
- Define a method to build **BGP playbook** (challenge 2)
 - -Allows us to execute the correct defense
- Show a **BGP playbook works in a real DDoS event** (challenge 3)
 - -Effectiveness of our approach in real attacks.

How it works?

Methodology: Estimating Load

- Problem:
 - upstream loss is invisible
- Insight:
 - Heavy hitters
 - Sites have predictable known good traffic
 - Infer attack size by change in this traffic

Methodology: Understanding Traffic Engineering (TE)

- We used three TE techniques
- Each TE method has tradeoffs (details in section 6)
 - Path prepending
 - Available in all sites
 - no granular control
 - Community strings
 - Not available in all sites
 - provide granular control
 - Path poisoning
 - Filtered when poisoning Tier-1 Ases
 - provide limited control

How we evaluate TE impact?

How a playbook looks like?

	Traffic to Site (%)		
Routing Policy	AMS	BOS	CNF
(a) Route-server	15	35	55
(b) All-IXP-Peers/Poison transits	15	35	45
(c) 2xPrepend AMS	25	35	45
(d) 1xPrepend AMS	35	25	35
(e) -1xPrepend BOS	45	45	15
(f) -1xPrepend CNF	45	5	45
(g) Transit-1	45	25	35
(h) Transit-2	55	15	25
(i) Poison Tier-1/Transit-2	35	25	35
(j) Poison Transit-1	55	25	25
(k) Baseline	65	15	15
(l) 1,2xPrepend BOS	65	5	25
(m) 1,2,3xPrepend CNF	75	15	5
(n) -1,-2,-3xPrepend AMS	85	5	5

Announcing only

to Transit-2:

AMS: 55% traffic

BOS: 15% traffic

CNF: 25% traffic

A sample playbook

Validation and Results

Offered Load Estimates are Accurate

- Question: does estimation work?
- Experiment:
 - Replayed packet trace
 - Measured observed traffic rate and access fraction to estimate
 - Compared the estimation with the reported rate
- Answer: yes

Using a Playbook to Defend

- Question: how to use a playbook during an attack?
- Experiment:
 - Simulate a DNS attack
 - B-root event from 2017-03-06
 - More events in section 8 of the paper
 - Against a 3-site anycast system
 - Each site has ~60k queries/s capacity

Let's look at the BGP playbook.

Solution: Playbook to Get Routing Options

		Traffic to Site (%)		
	Routing Policy	AMS	BOS	CNF
	(a) Route-server	15	35	55
	(b) All-IXP-Peers/Poison transits	15	35	45
	(c) 2xPrepend AMS	25	35	45
	(d) 1xPrepend AMS	35	25	35
	(e) -1xPrepend BOS	45	45	15
	(f) -1xPrepend CNF	45	5	45
_/	(g) Transit-1	45	25	35
۱ `	(h) Transit 2	55	15	25
	(i) Poison Tier-1/Transit-2	35	25	35
	(j) Poison Transit 1	55	25	25
	(k) Baseline	65	15	15
	(l) 1,2xPrepend BOS	65	5	25
	(m) 1,2,3xPrepend CNF	75	15	5
	(n) 1, 2, 3xPrepend AMS	85	5	5

Outcome after Applying a New BGP Policy

BGP changes at 300s; new traffic balance => no more drops (no hatching)

Conclusion

- New method to estimate attack size from known good traffic
- Propose BGP playbook to plan reactions to DDoS
- Evaluations against real attacks
- More information about software
 - Paper https://www.usenix.org/system/files/sec22-rizvi.pdf
 - Artifacts: https://zenodo.org/record/6473023

